direct product, abelian, monomial
Aliases: C102, SmallGroup(100,16)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C102 |
C1 — C102 |
C1 — C102 |
Generators and relations for C102
G = < a,b | a10=b10=1, ab=ba >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)
(1 97 17 28 38 89 45 64 76 53)(2 98 18 29 39 90 46 65 77 54)(3 99 19 30 40 81 47 66 78 55)(4 100 20 21 31 82 48 67 79 56)(5 91 11 22 32 83 49 68 80 57)(6 92 12 23 33 84 50 69 71 58)(7 93 13 24 34 85 41 70 72 59)(8 94 14 25 35 86 42 61 73 60)(9 95 15 26 36 87 43 62 74 51)(10 96 16 27 37 88 44 63 75 52)
G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,97,17,28,38,89,45,64,76,53)(2,98,18,29,39,90,46,65,77,54)(3,99,19,30,40,81,47,66,78,55)(4,100,20,21,31,82,48,67,79,56)(5,91,11,22,32,83,49,68,80,57)(6,92,12,23,33,84,50,69,71,58)(7,93,13,24,34,85,41,70,72,59)(8,94,14,25,35,86,42,61,73,60)(9,95,15,26,36,87,43,62,74,51)(10,96,16,27,37,88,44,63,75,52)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,97,17,28,38,89,45,64,76,53)(2,98,18,29,39,90,46,65,77,54)(3,99,19,30,40,81,47,66,78,55)(4,100,20,21,31,82,48,67,79,56)(5,91,11,22,32,83,49,68,80,57)(6,92,12,23,33,84,50,69,71,58)(7,93,13,24,34,85,41,70,72,59)(8,94,14,25,35,86,42,61,73,60)(9,95,15,26,36,87,43,62,74,51)(10,96,16,27,37,88,44,63,75,52) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100)], [(1,97,17,28,38,89,45,64,76,53),(2,98,18,29,39,90,46,65,77,54),(3,99,19,30,40,81,47,66,78,55),(4,100,20,21,31,82,48,67,79,56),(5,91,11,22,32,83,49,68,80,57),(6,92,12,23,33,84,50,69,71,58),(7,93,13,24,34,85,41,70,72,59),(8,94,14,25,35,86,42,61,73,60),(9,95,15,26,36,87,43,62,74,51),(10,96,16,27,37,88,44,63,75,52)]])
C102 is a maximal subgroup of
C52⋊7D4 C52⋊A4
100 conjugacy classes
class | 1 | 2A | 2B | 2C | 5A | ··· | 5X | 10A | ··· | 10BT |
order | 1 | 2 | 2 | 2 | 5 | ··· | 5 | 10 | ··· | 10 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C5 | C10 |
kernel | C102 | C5×C10 | C2×C10 | C10 |
# reps | 1 | 3 | 24 | 72 |
Matrix representation of C102 ►in GL2(𝔽11) generated by
3 | 0 |
0 | 10 |
8 | 0 |
0 | 5 |
G:=sub<GL(2,GF(11))| [3,0,0,10],[8,0,0,5] >;
C102 in GAP, Magma, Sage, TeX
C_{10}^2
% in TeX
G:=Group("C10^2");
// GroupNames label
G:=SmallGroup(100,16);
// by ID
G=gap.SmallGroup(100,16);
# by ID
G:=PCGroup([4,-2,-2,-5,-5]);
// Polycyclic
G:=Group<a,b|a^10=b^10=1,a*b=b*a>;
// generators/relations
Export